Density is mass per volume

density units are:

$$
\begin{aligned}
& \mathrm{d}=\mathrm{g} / \mathrm{mL} \\
& \mathrm{~d}=\mathrm{g} / \mathrm{cm}^{3} \\
& \mathrm{~d}=\mathrm{g} / \mathrm{cc}(\text { not typical vol. unit) }
\end{aligned}
$$

Density equation can be rearranged to solve for any variable:

$$
\begin{array}{ll}
\text { Density }=\mathrm{mass} / \text { volume } & \mathrm{d}=\mathrm{m} / \mathrm{v} \\
\text { Mass }=\text { density } * \text { volume } & \mathrm{m}=\mathrm{d} \bullet \mathrm{v} \\
\text { Volume }=\text { mass/density } & \mathrm{v}=\mathrm{m} / \mathrm{d}
\end{array}
$$

1. To calculate density if mass and volume are given, use this equation: $d=m / v$

Sample of lead metal weighs 10.57 g and has a volume of $0.931 \mathrm{~cm}^{3}$

$$
\mathrm{d}=10.57 / 0.931=11.35 \mathrm{~g} / \mathrm{cm}^{3}
$$

2. Density by water displacement:

Calculate the density of silicon that weighs 8.763 g and is placed in grad. cylinder that contains 25.00 ml of water; the final water level is 28.76 mL

$$
\begin{aligned}
& \text { Mass }=\quad 8.763 \mathrm{~g} \\
& \mathrm{~d}=8.763 \mathrm{~g} / 3.76 \mathrm{~mL}=2.3305=2.331 \mathrm{~g} / \mathrm{cm}^{3}=2.331 \mathrm{~g} / \mathrm{mL}
\end{aligned}
$$

3. To determine mass using density, use this equation: $\mathrm{m}=\mathrm{d} \bullet \mathrm{v}$

Calculate mass (in kg) of 1 qt of milk; density $=1.03 \mathrm{~g} / \mathrm{mL}$
$1 \mathrm{qt}=946 \mathrm{~mL}$ [you need this relationship]
$\mathrm{m}=\mathrm{v} / \mathrm{d}=946 \mathrm{~mL} / 1.03 \mathrm{~g} / \mathrm{mL}=918.446 \mathrm{~g}=0.918 \mathrm{~kg}$
4. To determine volume using density, use this equation: $\mathrm{v}=\mathrm{m} / \mathrm{d}$ Calculate volume of 20.0 g of sucrose; density $=1.56 \mathrm{~g} / \mathrm{cc}$

$$
\mathrm{v}=\mathrm{m} / \mathrm{d}=20.0 \mathrm{~g} / 1.56 \mathrm{~g} / \mathrm{cc}=12.8 \mathrm{cc} \text { pay attention to units! }
$$

